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It is shown that the ratio of signal-to-noise ratio at the output to that at the 
input can be made larger than unity when a nonlinear system is subjected to a 
weak periodic perturbation and a harmonic noise. This theoretical result is in 
conformity with the experimental observation published recently by R. Li et al. 

KEY W O R D S :  Harmonic noise; stochastic resonance: projected process; 
signal-to-noise ratio. 

1. I N T R O D U C T I O N  

There has been an upsurge of interest (both theoretical and experimental) 
in the topic of enhancement of signal-to-noise ratio, more commonly 
known as stochastic resonance, in recent years. ~t-~5~ It is a noise-induced 
large response to a weak periodic signal. The system in a noisy environ- 
ment is influenced by a periodic force (signal) and also by a conservative 
force which should be nonlinear in nature in order to get the enhancement 
of the signal at the output. At the output, the signal is recognized by its 
original frequency. The enhancement of signal power implies that some 
portion of the incoherent noise is fed into the coherent signal power. Thus 
a cooperative effect of noise and periodic forcing in a nonlinear system 
takes place, which makes this problem highly interesting to the nonlinear 
science community also. 

Instead of observing the signal at the output, the more relevant quan- 
tity is the amplification of signal over noise or signal-to-noise ratio (SNR) 
at the output. As the SNR represents the quality of the signal, which 
plays a central role in the information transfer, current effort is directed 
toward searching for a device where a "better" SNR could be achieved. The 
qualification of "better" is, however, fixed ~5~ by looking at the ratio of 
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SNR at the output to the SNR at the input. Thus, mere enhancement of 
signal-to-noise power at the output is not of concern, but whether the SNR 
at the output can be made larger than that of the input. 

Most of the systems analyzed so far consist of a bistable system 
influenced by a weak priodic signal and white noise. It has been noted ~tSI 
that in these systems the ratio we are looking at is less than unity. Recently, 
an experiment ~tSI has been carried out where instead of white noise, har- 
monic noise was used at the input. Noise generated by a damped system 
driven harmonically and by white noise as its source is called harmonic 
noise. Their system, ~tS~ however, is not coupled directly by a weak signal. 
The signal instead is applied at the source of the noise generator. Experi- 
ment shows that the ratio of the output SNR to the input SNR can be 
made larger than unity. In this paper we analyze this system theoretically. 

In Section 2 we briefly sketch the theory of enhancement of signal-to- 
noise ratio for a nonlinear system driven by a weak periodic signal and 
white noise and show that the ratio of the output SNR to the input is less 
than unity. In Section 3 we analyze theoretically the system used in the 
experimenPtS~ and obtain an expression for the ratio of the output SNR to 
the input SNR and show that this could be made larger than unity. Finally, 
a few concluding remarks are given in Section 4. 

2. T H E O R Y  OF E N H A N C E M E N T  OF S I G N A L - T O - N O I S E  RATIO 

The stochastic system that is being considered now is nonlinear and 
driven by a weak periodic signal and white noise. The Langevin equation 
describing this system is 

. f=  - Vo(x) + A cos(f2t + O) + F(t) (2.1) 

where Vo(x ) is the potential and - V[~(x) is the conservative force derived 
from the potential Vo(x). The force V~(x) is assumed to be nonlinear. Some 
other characteristic features of Vo(x ) will be specified whenever they are 
required in the further analysis. Here, A is the amplitude of the periodic 
signal of period 2n/Q. The amplitude A is assumed to be small and 0 is an 
arbitrary phase. F(t) is a white noise specified by 

< F ( t ) )  = 0 (2.2a) 

< F(t) F(t ' ) )  = 2D fi(t-- t') (2.2b) 

where angular brackets denote the average over ensembles and D is the 
diffusion constant, a direct measure of the strength of the noise. 
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The corresponding Fokker-Planck equation for Eq. (2.1) is written in 
the convenient form 

OP(x, t) (U~ + L ~l~) P(x, t) (2.3) 
Ot 

where P(x, t) is the probability distribution function and the probability 
current for the unperturbed (when the signal is absent) system S~~ t) is 
related to U ~ as 

OS ' ( x ,  t) 
Ox 

Ll~ P(x, t) (2.4) 

and L "  is given by 

D 0 e ,~,.~ 0 eq, C.,. ~ L ' ~  = ~ - - ~ (2.5) 

with 

q~(x) = Vo(x)/D (2.6) 

The perturbation operator L ct~ is given by 

0 
U~l(x, t) = - A  cos(g?t + 0) 0-x (2.7) 

We wish to analyze the system in terms of the perturbation to the 
unperturbed states; thus a spectral decomposition of L ~~ is required. We 
note, however, that the operator L "  is not Hermitian, although e 'L""  or 
e't'/2L4~ -'t'/2 is Hermitian. Hence we transform Eq. (2.3) into a more con- 
venient form which contains the Hermitian operator as its unperturbed 
part. The transformed equation reads 

Off(x, t) (E~~ + E~l~) ff(x, t) (2.8) 
Ot 

where the Hermitian operator ff~o) is given by 

ffjO)(x)=De,t,/2Oe-,t',.,)~__~e~/2 (2.9) 
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The probability current expressed in terms of the new funct ion/5 is 

S'~ = -De-a,c.,.~ 0__ e ~,C,.,/z f i  (2.10) 
Ox 

and the perturbation operator E ~ is 

E ~ ~ ~ = - A cos(t2t + 0) [ a/&v - V6(x)/2D ] (2.11 ) 

The transformed distribution/5(x, t) is related to P(x, t) by 

fi(x, t)=e*/:P(x, t) (2.12) 

Let the complete set of orthonormal eigenfunctions and corresponding 
eigenvalues of the operator /S I~ be denoted as {In)} and { -2 , ,} ,  
n = 0, 1, 2 ..... respectively, such that 

/Z I~ In) = -2 , ,  In) (2.13) 

with 

(n lrn)  = ~  ..... (2.14) 

As ( n l / 7  ~ In) for arbitrary n can always be expressed as a negative-semi- 
definite form, one concludes that 2,/> 0, Vn. We order them such that 
0 ~< 2~ ~< 22 ~< .... and assume that the potential Vo(x) ~ o~ as Ix l  ~ ~ at least 
as Ix l  = with 0c > 1. This assumption implies that )-t'~ 22, )-,,, which immen- 
sely simplifies the calculation, yet brings out the enhancement, as we will 
see. Out of all these eigenstates, a particularly simple one is the lowest one 
corresponding to 20 = 0. This state can be easily found by looking at the 
operator L~~ in Eq. (2.5). Thus the ground state ( x l 0 )  for the operator 
/7 c~ with natural boundary conditions is written with the help of the 
definition (2.12) as 

tPo(X) = ( x l 0 )  = Noe-'~c"~/2 

where N o is the normalization constant and ~(x)  is given by Eq. (2.6). 
The conditional probability fi(x, t lXo, to) can then be written in terms 

of the conditional probability /50(x, t ]Xo, to) for the unperturbed problem 
(with A = 0) as 

;' f fi(x, tlXo, to)=fio(X,t[Xo, to)+ dtj dxlfio(X, t lx l , t , ) s  
0 

x/5o(Xl, tl ]xo, to) (2.15) 
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where E I~ is the perturbation operator containing the amplitude A, which 
is small (weak signal), such that we keep terms proportional to A only and 
neglect terms O(A 2) in the spirit of linear response theory. This is why we 
keep term proportional to A in Eq. (2.15). 

The conditional probability for the unperturbed operator is 

Po(x, tlXo, to)= { e x p [ ( t - t o ) f f o j ] }  cS(X-Xo) (2.16) 

which can be expressed in terms of the eigenfunctions of the unperturbed 
operator E I~ as 

rio(X, tlXo, t o ) = Z e  -~ ' ' ' - ' ' '  ~,,(x) t~,,(Xo) (2.17) 
t t  

When ( t - t o )  is very large, the conditional probabil i ty/5 can be obtained 
by plugging Eq. (2.17) and Eq. (2.11) into Eq. (2.15) and letting to--* - ~ .  
Noting that ;t,, > 0, Vn > 0, we express/5(x, t lXo, -oO in terms of the eigen- 
functions of the unperturbed operator/7, ~~ as 

/5(x, t l x0, - =) = So(X)  o(Xo) - A Y ff,,(Xo)< n l alax- V (x)/2D 10) 
tl 

• (2] + s z) -~/2 cos(f2t + 0 + ~,,) (2.18) 

where the phases 0c,, are defined through 

;t,, = ().~, + n 2) '/~- cos ~,, 

- O  = (2~, + s j/2 sin ct,, 
(2.19) 

The probability distribution P(x, t) and the conditional probability 
distribution P(x, t Ix o, t o) are related by 

t "  

P(x, t) = J dxo P(x, t l Xo, to) P(xo, to) 

and a similar relation exists for 15. Since P(x, t) and/5(x,  t) are related by 
Eq. (2.12), the corresponding conditional probabilities are related by 

e(x,  t l Xo, to) = t~o(X)/5(x, t l Xo, to) fro ~(Xo) (2.20) 

With the help of Eqs. (2.20) and (2.18) one immediately gets the condi- 
tional probability for the original problem as 

P(x, t[ xo, - o 0  = ~o(x) - A~o(x) ~'. ~,,(x)(n[ a/ax- V~(x)/2D) 10) 
t t  

x (2,] +,Q2) -I/2 cos(f2t+O+o~,,) (2.21) 
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From the explicit expression of ( x l O )  it is immediately clear that 

(n[ O/ax 10> = --(n[ V~(x)/2D 10) (2.22) 

When this result is substituted in Eq. (2.21) we obtain P(x, t lxo, -o0 as 

P(x, tlXo, -cr ~o(x)+ (A/D) ~o(X) ~ tk,,(x)(nl V~ 10) 
t l  

• (22 + E22) -~/2 cos(f2t +/9 + ~r (2.23) 

It is interesting to note that this expression is independent of the initial 
value xo. We call it P~(x, t). Thus the system evolving through Eq. (2.1) 
forgets its initial history after a considerable amount of time. All its 
moments are independent of its initial value after sufficient time has 
elapsed. 

We now wish to calculate the spectral density or the power spectrum 
of the variable X(t), since it will give directly the partition of the power at 
the output into signal and noise. By the Wiener-Khinchine theorem the 
power spectrum is the Fourier transform of the autocorrelation function 
and is given by 

S(o), t) = I (X(t)  X(t + r ) )  e i'''~ dr (2.24) 

where (X( t )X( t  + r ) )  is defined as the autocorrelation function 

( X(t) X(t + r ) )  = II dx dxo xxoP(x, t + r; Xo, t) (2.25) 

where P(x, t + r; x o, t) is the joint probability of having the values of the 
stochastic variable X at time t as xo and at time t + r as x. We wish to 
calculate this joint probability when t is very large and sufficient time has 
elapsed after the system starts from some arbitrary value which would not 
appear in the distribution, as expected from the result (2.23). Thus 
P(x, t + r; Xo, t) is given by 

P(x, t + r ;  Xo, t ) = P ( x ,  t + r l x o ,  t) P~(xo, t) (2.26) 

The expression shows that we require P(x, t + r lxo, t) for arbitrary r. 
The procedure for evaluating this is exactly same as for P~(x, t) except that 
we are not allowed to take the time difference arbitrarily large, which 
makes the algebra sufficiently simple. Hence P(x, t+ f i x  o, t) will neces- 
sarily contain many other terms. Here we make the following assumptions, 
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which make the algebra less tedious. First, the potential Vo(x) diverges 
very fast at least as Ixl ~ with ~ > 1 as Ixl ~ oo. This makes the separation 
between consecutive eigenvalues large and 2~ ~ ;ti, Vi> 1. Second, Vo(x) is 
nonlinear and it possesses at least one maximum. For a bistable potential, 
for example, it has one maximum and two minima. We further assume that 
Vo(x) is symmetric about x = 0 ,  which simplifies some of the matrix 
elements in the derivation. Next, we know from Kramer's theory of the 
escape rate that the first nontrivial eigenvalue 2~, which is nothing but the 
rate of escape from the potential well, is approximately proportional to the 
exponential decay of the ratio of barrier height to the diffusion constant. 
Later we will see that this feature provides a competitive characteristic 
between the noise kicks and periodic forcing on the system, leading to 
an optimum value of the barrier height or strength of the noise at which 
cooperation between them takes place. 

Finally, we note from Eq. (2.24) that the power spectrum depends on 
time t. In experiment, however, t is the time at which one starts to take 
data for calculating the spectrum. The time t is arbitrary, hence one takes 
various values of t, computes the power spectrum, and then averages over 
all the spectra. Thus, if t is taken with a uniform probability over the signal 
period T =  2z~/t2, one obtains the average power spectrum S(co) as 

T 

S(co) = ( l /T)  f,, S(o9, t) dt (2.27) 

This procedure simplifies the algebra considerably. We obtain the auto- 
correlation function averaged over signal period as 

(X(t)  X ( t + r ) ) = [ F ~ c o s f 2 r + ( 1 - F ~ ) e - a ' ~ ] ( O l x l l )  "- (2.28) 

where the quantity F.,. is defined as 

C = (A2/2D2)( I I v;~ 10> -'/(,~ + o 2) (2.29) 

In the expression (2.28) we have omitted the terms O(e-  ~-'~), O(23/[2~ + g22 ] ), 
and O((22 - 2 t)/[(22 - 2t )2 + t'22]). 

In the expression (2.28) we see that the autocorrelation function of the 
stochastic variable X, after sufficient time has elapsed, separates into two 
components. The first term, which is associated with cos Or, is oscillating 
with same frequency as the signal. Hence at the output we recognize this 
term as associated with the signal and the other term of course with the 
noise. As the noise term has an exponential dependence, it has a simple 
analogy with Ornstein-Uhlenbeck noise with correlation time 1/2t. The 
term associated with the signal is proportional to A 2, hence it is small. That 
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is, the power that is fed into the coherent signal is small. As Vo(x) is sym- 
metric, E~~ in Eq. (2.9) is also symmetric, hence the eigenfunctions have 
definite parities, t~o(X) is of course even and ~ ( x )  is odd. For a harmonic 
potential or for a linear force the matrix element (11 V~; 10) is zero. In 
order to have nontrivial F,,  a nonlinear force is required. 

The power spectrum of the output is obtained by simply taking the 
Fourier transform of Eq. (2.28) and is given by 

S(o)) = { rrF.Ea(co + O ) +  6(o9-..Q)] +(1 -F . )2 , l , / ( 2~  + co2)} (01 x I1) 2 
(2.30) 

The signal-to-noise ratio at o9 = /2  (signal frequency) is then given by 

Io= {M'.,./2(1 -f',.)}().~ + f22)/2, =(~A2/4D)<l l  V6 10>2/2,D (2.31) 

where we have used the definition (2.29) of F,. and smallness of F,  with 
respect to unity. I,, refers to the signal-to-noise ratio at the output. 

The power spectrum of the noise and the signal at the input can be 
obtained similarly. They are 2D and (zcA2/2)[3(co+f2)+O(og--g2)], 
respectively. Hence the signal-to-noise ratio at o9 =/2  is 

Ii = rcA 2/4D (2.32) 

Theretbre, the signal-to-noise ratio at the output I,, in Eq. (2.31) can be 
written in terms of the signal-to-noise ratio at the input as 

I , , = L ( I [  V[~ 10)2/2,D (2.33) 

In order to have an idea about the dependence of I,, on the potential 
barrier and diffusion constant one might attempt to calculate the expression 
(2.33). As V o is an arbitrary nonlinear function, the exact evaluation of )-t 
and ( x  11 ) is not possible; however, one can evaluate them approximately. 

As an illustration, we take the potential 

Vo(X  ) = e o r  - 2 ( x / c )  2 + (x / c )  4 ] (2.34) 

This bistable potential has one maximum at x = 0 and two minima situated 
symmetrically around x = 0  at x - - + c .  The barrier height of the above 
potential is Uo. With the approximate form of 2, and ( x  L 1 ) for the poten- 
tial (2.34) the signal-to-noise ratio at the output has been calculated in the 
recent literature. ~7-9~ The expression reads 

I,, = Ii(4 x/2/rc)(Uo/D) e -c u,,/m (2.35) 
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The dependence of the output SNR on the noise strength D can be 
seen by inserting the value of Ii from Eq. (2.32) in Eq. (2.35), 

I,, = ~ 2 A 2 U o  D - 2e -(uo/o) (2.36) 

For small noise strength D compared to the barrier height Uo, I,, will be 
very small due to an exponentially small factor (small Kramer rate). On 
the other hand, for large values of D, it is again small due to the factor D -  2 
(periodic forcing is dominated by noise kicks). Thus in between one 
obtains a maximum of the output SNR. This feature is counterintuitive in 
the sense that increasing noise strength from a very low value may cause 
the enhancement of the signal-to-noise ratio at the output. Looking at the 
dependence of / , ,  on noise strength D, we find that the maximum value of 
/,, occurs when D = Uo/2. Thus (I,,) . . . .  becomes 

(L,) .... = (4 x/2/e'-)(A2/Uo) (2.37a) 

or, when expressed in terms of signal amplitude and noise strength, 

(I,,) ..... = (2 ~/2/e2)(Az/O) (2.37b) 

It is clear from Eq. (2.37b) that in order to have the maximum value of 
SNR at the output greater than 1 dB, one needs A2/D > 3.24. 

Our concern, however, is with the ratio of the output SNR to the 
input SNR, which can be seen from Eq. (2.35). We call this ratio R: 

R = I,,/I~ = (4 n/2/n) x e - "  (2.38) 

where x = Uo/D. The ratio R is independent of signal amplitude. For small 
and large x, R will be small and one can see that the maximum of R occurs 
w h e n x = l  o r D = U o :  

(R) ...... = (4 ~/2/ne) ~-0.66 (2.39) 

This result shows that for the nonlinear bistable system driven by a 
periodic signal in a white-noise environment, the ratio of the output SNR 
to the input SNR is always less than unity. 

3. E N H A N C E M E N T  OF T H E  R A T I O  OF O U T P U T  S N R  TO 
I N P U T  S N R  

We next consider a nonlinear system perturbed stochastically by a 
harmonic noise. Signal is applied at the source of the noise generator. This 
system recently has been studied experimentallyJ ~5~ In this section we 



260 Ohara 

analyze the system theoretically. The system is described by the following 
set of Langevin equations: 

2 = - -  V [ ~ ( x ) + k y  (3.1) 

3~ = Y (3.2) 

1;'= - ) ,  Y+ a) o y + A cos(t2t + 0) + F(t)  (3.3) 

where k is a parameter of the linear amplifier; ),, O9o are the parameters of 
the harmonic noise generator; A and f2 are the characteristics of the signal, 
as mentioned before; and F(t )  is white with the properties (2.2a) and 
(2.2b). 

The Fokker-Pianck equation corresponding to Eq. (3.1) is 

OP(x, y, Y, t) 
- f 'P(x ,  y, Y, t) (3.4) 

Ot 

where P(x,  y, Y, t) is the probability distribution for the full description of 
the system and the operator F is broken up into parts: 

F =  F o + F I (3.5) 

with Fo given by 

Fo = ~-fv+~--~y +o9; v + D  (3.6) 

F~ is again broken up into an unperturbed part F~ ~ and a perturbed part 
FC~ 1). All these partitions are done for the convenience of later develop- 
ments. We have 

Ft = Fl~ + Fll I~ (3.7) 

where F~l ~ and Fl I~ are 

0 
F"~ = -O-~r [ - V;( x ) + ky  ] (3.8) 

0 
r l ' ) =  --A cos(12t + 0) 0Y (3.9) 

We note that in this partition F o contains coefficients which are at best 
linear and this operator has been well studiedJ t6~ Perturbation by the signal 
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is only through the operator F~I ~. The remaining unperturbed part consists, 
however, of two operators. We denote the unperturbed operator by F~~ 

F ~~ = Fo + FIt ~ (3.10) 

Equation (3.4) can be transformed into a more convenient form by 
defining a function f ( x ,  y, Y, t) related to P(x, y, Y, t) by 

f ( x , y ,  Y, t )=e'~- '"rv2p(x,y,  Y, t)  (3.11) 

where ~(y ,  Y) is given by 

�9 (y, Y) = (y/2D)( Y-' + o9~ y2) (3.t2) 

The function f ( x ,  y, Y, t) then satisfies the following evolution equation: 

af(x, y, I1, 
t ) - F f ( x , y ,  II, t) (3.13) 

0t 

where P is related to F by 

F =  e't'/2Fe-~/2 (3.14) 

The operator/~ consists of/~o~ and/~c~ which are related to U ~ and F~ '~, 
respectively, by relations similar to (3.14). They explicitly read as 

P " '  = ]~0 + ]~', ~ (3.15) 

Fo = -O~o(ab* - atb) -- ybtb (3.16) 

r, ,o ,  = [ 
Ox -- V~(x) + k y ]  (3.17) 

F'." = - ( A / x / ~ )  cos(12t + O) b t (3.18) 

where the operators a, b are defined by 

a = (v / -~/coo)  0/0y + ( o , , / 2 x / ~ ) y  (3.19) 

b = ,,//--~, O /O Y + (1/2 x / ~  ) Y (3.20) 

The corresponding adjoint oprators at, b* are defined similarly. The 
operators a, at, b, b* satisfy the commutation properties ~t6~ 

[ a, at] = [ b, b t] = 1 (3.21) 

[a, b] = [a t, b] = [a, b t ] = E at, b] = 0  (3.22) 
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The operator if0 is sufficiently simple, although it is not Hermitian. It 
possesses a complete set of normalized eigenfunctions O,,,.,_,(y, Y) with the 
corresponding eigenvalues -2,,~.,,,, ck6~ 

/~o~ ...... _,(y, Y)=-2,,,.,,._~,,,.,,.(y, Y) (323) 

- * - t  ~ ~, _ - t  _ F0~O,,,.,,_,(), Yt = -  ,,,.,,,~/,,,.,,,(y, Y) (3.24] 

d Y  - -  "r ~ y )  - dy ~b,,, .,,._(3, r Y) = ,5,,,.,,15,,2.,,., (3.25) 

We note that as /~o ~a/~,  one has to invoke the eigenfunctions of the 
adjoint operator ff~. The eigenfunction of Fet corresponding to the eigen- 
value -2,,.,,_. is denoted ~b *,,,.,,,_( y, Y) and the eigenvalues are 

2,,,.,,,.=n111 + n,2_,; nl,  n z ~ Z  (3.26) 

with 2~, 22 being the eigenvalues of the matrix 

The eigenvalues 2~, 22 satisfy the properties 

2t + 22 = 7 (3.28a) 

2,22 = coo (3.28b) 

Re(2L, 22) > 0 (3.28c) 

Of particular interest is the eigenvalue ,;to. o, which is equal to zero, and the 
eigenfunctions t~o.o(y, Y) and ~.o(Y, Y) corresponding to -Po and fre t are 
the same. 

Equation (3.13) describes the time development of the probability dis- 
tribution, which is a function of x, y, Y, and t. However, our concern is 
with the time development of the reduced distribution, which is a function 
of stochastic variables x and time t only. Although the full description is 
Markovian in nature, the integrated or reduced description naturally 
depends on the history, making the description non-Markovian in nature. 
Our aim is to obtain a Markov description of the reduced distribution 
under suitable approximation. The coarse-grained distribution at any 
time t would be connected to its previous values through the nontrivial 
eigenvalues /1. ..... z (nr, n2r  the contributions of these terms would be 
expected to decay exponentially with the decay constant ),. As these terms 
constitute the history which makes the description non-Markovian, this 
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suggests we define a projection operator P which projects out the full 
description into the t~o.o(y, Y) and look for the time development of the 
projected distribution function. The operator P is defined to be 

e If> = 10, 0><0, 0If>.,.., (3.29) 

The integer numbers in the ket correspond to nt, n2 of 2,,,.,,_. The integers 
in the bra correspond to the eigenfunctions of the adjoint operator -P0* and 
the projection is taken at each value of x and t. 

Our next development parallels the projection operator method due to 
Nakajima, Zwanzig, and Mori. llTI 

We start by writing the time development equations for the projected 
distribution and its complementary part: 

o(pf)  
- PF(Pf) + PF(P'f)  (3.30) 

Ot 

O(P'f) _ P'F(P'f)  + P'F'(Pf) (3.31) 
Ot 

where the operator P' projects the distribution onto the space complemen- 
tary to the zeroth eigenstate such that 

P + P '  = 1 (3.32) 

Our intention is to obtain the time development equation for Pf. 
Hence we solve Eq. (3.31) for obtaining the solution P'f(t), which will be 
substituted back into Eq. (3.30) to obtain the required equation. 

Given the values of the distribution f at time t 0, we can write the 
solution P'f(t)  formally as 

t--tu)P'f ~I~ l -  I ~I t P' f ( t )=e '  P f (  o)+ dre"-"e'r '~ 
% 

0 

It r)  P 'Ft0) p t F (  I + dr e " -  - - t  ~[P 'f(r)]  (3.33) 
II  

where/~ on the r.h.s, of Eq. (3.31) is broken up into an unperturbed part 
/~lo~ [defined in Eq. (3.15)] and an explicitly time-dependent part /~l~l(t) 
[ defined in Eq. (3.18) ]. 

The following properties of P simplify the derivation considerably: 

/~oP = 0 (3.34) 

P-Fo = 0 (3.35) 
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The first equality (3.34) is obtained since 20.o=0. The second equality 
(3.35) results because ]0, 0 )  is the eigenstate for both the operators a and 
b with zero as the eigenvalue. 

The first term on the r.h.s, of Eq. (3.33) describes the evolution of the 
initial distribution f(to). We will consider this term later. Let us concen- 
trate on the second term of the r.h.s, of Eq.(3.33). We note that /~o~ 
appearing in the exponent consists of two parts, 

F ' ~  Fo + F~jo, (3.15) 

As fro involves ), and/~o~ does not, we have for large ~,, 

e ( t -  r)P'F"~ At r)P'Fo (3.36) 

and with the help of Eqs. (3.32) and (3.35) one writes 

e" ~/"~,=el,-r~ro (3.37) 

Next, with the help of Eq. (3.32) one sees 

P'FPf  = F P f  -- P F P f  (3.38) 

where the term PffPf, which arises also in Eq. (3.30), simplifies on using 
Eq. (3.35) to 

- - { O V' 
prpfIt) = t~o.oIy, y) - ~ [ - oCX)g(x, t)] - k ( 0 ,  01 3' 10, 0 )  - -  

Og(x, t) 
Ox 

+ (A/x/~,)cos(~t + 0) (0, 0l b* 10, 0)  g(x, t)) (3.39) 

The quantity g(x , t ) in  Eq. (3 .39) rears  to the reduced distribution and is 
defined as 

g(x, t)= ( O, Ol f )  ,,, (3.40) 

With the help of Eqs. (3.34) and (3.37), the second term of r.h.s, of 
Eq. (3.33) simplifies to 

i,, { Og(x, r)(),t~o.o(y, r ) )  ,,dr e"-~*~' - k  O ~  

+ (A/,f-D~) cos(~-: + 0) g(x, r)(b*~o.o(y, r ) ) }  (3.41) 
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As F 0 appears on the left in the exponent of Eq. (3.41), one should express 
(yt~o.o(y, Y)) and (bt~o.n(y, Y)) in terms of the eigenfunctions of the 
operator/~o. The results are 

Y~o.o(Y, Y)=(x/~'/o)o)6-'/2(~/22~t.o+x/2~o,~) (3.42) 

b*t~o.o(y, Y)=c~ '/ '-(x/2t~,.0+x/22t~o.,) (3.43) 

where ~ = 2~ - 2 2 .  

We next look at the r.h.s, of Eq. (3.30). The first term is already 
evaluated in Eq. (3.39). As Y~o.o(Y, Y) and b*~o.o(y, Y) contain functions 
like ~ .o  and t~o.~, by employing the orthogonality relation (3.25), we find 
that Eq. (3.39) further simplifies to 

PFPf(t) = tko.o()', Y) - ~ { -  Vc;(x)g(x, t)] (3.44) 

We see from Eq. (3.33) that P'f consist of three terms. The second 
term of Eq. (3.33) is simplified to Eq. (3.41), on which P/~is to be operated 
while consisdering Eq.(3.30). One may notice PF=PF~ because of 
Eq. (3.35) and P/'~ = P(F~t~ +/~c~ I) from the definition (3.7). The operator 
PP~;  operating on any function will be identically zero because of the 
fact that b~. t~=0.  Next, /~co~ consists of two parts. As (3.41) contains 
the functions ~bt. 0, t~o.t, the term associated with -(8/8x)[-V;(x)] will 
be dropped due to orthogonalities of these functions with ~;.o in the 
operator P. Hence we will be left with the term associated with - k y '  O/Ox, 
i.e., 

0 
P.P,(3.41) = -k-~x (y, YIO, 05(0 ,  O[ y' �9 (3.41)5 (3.45) 

Since ( vt~o o) contains ~J.0 and tko,; and (3.41) also contains the same func- 
tions, the r.h.s, of Eq. (3.45) will be nontrivial. This term can be calculated 
in a straightforward manner as 

( Og(x" 

The expression (3.46) shows that the time development of the reduced 
distribution g(x, t) depends on the earlier history. However, we note that 
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the maximum contribution of (3.46) comes from the time r -~ t. The term 
e -~'-~)~ or e -('-~)~-' decays very fast as t - r >  1/y. As has been stated, we 
would like to obtain a Markovised description of the reduced distribution 
g(x, t). Markovization implies that we replace g(x, r) in the integrand by 
g(x, t). This means that the fractional change ofg(x,  t) over a time 1/~, will 
be less than unity, 

l(l/g) OglOtl/}, ,~ 1 (3.47) 

Finally, as the integrand decays very fast due to the exponential factor, we 
can replace the lower limit of the integral to by - ~ .  With these substitu- 
tions, (3.46) is simplified to 

- [ " Og(x, t)] Lz (L):a-g(x't)kAoCOS(at+0+p/ J (3.48) 
\coo/ Ox z 

where 

A0 = A[(.~ q-~'-22)(,~2 + g22)] -'/2 =At}"r 2--,_~sg + t W o - ~ "  2 ,-,2,2~-,/2; j (3.49) 

and the phase fl is defined through 

tan fl = - y/2/(oo o - 0 2) (3.50) 

We will now consider the fist term in Eq. (3.33) describing the evolu- 
tion of the initial distribution fr(to). The term is 

e(1-t~176 P' f (  to) (3.51) 

where we have used the results of Eqs. (3.36)-(3.37). In order to evaluate 
the term, we expand P'f(to) in terms of the eigenfunctions of/~o. Since 
{ Inl, n2)} is complete, one writes (3.51) explicitly as 

~ '  {exp[--2,,,.,,2(t--to)] } ]nl ,n2)(n , ,n2] . f  ) (3.52) 
n1,712 

where the prime on the summation indicates the exclusion of n~ = n2 = 0. 
Because Re{ 2,,,.,,_} > O, Yn~,n2>0, for ( t - t o ) > l / y  the contribution 
decays very fast, so that the effect of the initial distribution can be ignored 
in this time regime. 

We have not still considered the third term in Eq. (3.33). If we ignore 
the third term, P'f(t)  will be equal to (3.41) in the specified time regime, 
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where the contribution from the initial distribution can be ignored. When 
written explicitly, Eq. (3.33) takes the form 

P'Y(, )  : e"-'a'P'r',"t P'Y( )3 (3.53) 

where we have used the notation [P'f(t)] ~~ for (3.41) and used the results 
of (3.36)-(3.37). 

Equation (3.53) can be thought of as an integral equation in [P'f(t)],  
where the zeroth-order approximation is written as [P'f(t)]~~ Intro- 
ducing the operator K(t, t), we write Eq. (3.53) more explicitly as 

ff/ 
I 

[P'f(t)] = [P'f( t)] '~ dr K(t, r ) [ P ' f ( r ) ]  
o 

(3.54) 

where K(t, t) is defined as 

K(t, t)  = e I ' -  r'Z3'P'/~lt I ~ (3.55) 

From our earlier discussion we saw that pfflj~= O. Hence K(t, r) is further 
simplified to 

K(t, t )  =el '  - ,)r,, Fl-~l~ (3.56) 

The first-order approximation of [P'f(t)] is obtained by substituting 
[ P ' f ( r ) ]  in the integral of (3.54) by [P'f(t)]~~ 

[ P'f(t) ] It'= [ P'f(t) ]l~ + f '  dr K(t, r ) [ P ' f ( r ) ]  '~ 
" I(I 

(3.57) 

Consider the integral in Eq. (3.57). We have seen from Eqs. (3.42)-(3.43) 
that [P'f(t)] ~~ contains the functions 5uo, 50. t. When they are acted on 
by f f~ ( r ) ,  which contains the b* operator, they produce the functions ~2,o, 
5u~, 50.2- As these functions are eigenfunctions of F0, the integral in 
Eq. (3.57) consists of these functions only. The expression [ P'f(t) ] ~ thus 
obtained is to be substituted in Eq. (3.30) in order to get the time evolution 
for projected distribution. The r.h.s, of Eq. (3.30) where [P'f(t)] I~ is to be 
substituted "is 

Pff[P'f(t)] '"=Pff,[P'f(t)]~"=PFl~~ I~' (3.58) 

The operator P defines the inner product with -* ~'o.0. So the terms associated 
with -(O/ax)(-V6(x))  in pi01 drop out because of the orthogonality of 
52.0, 5J.i ,  and 50,_, with 50.0. As (Yffo*.0) arising from the term - k y '  O/ax 

8 2 2 / 8 7 / I - 2 - 1 9  
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in pCjo~ contains the functions -* -* ~9o. I, to fft.o and again due their orthog- 
onality with ff2.o, ~9~. ~, and q/o.2, the term will be identically zero, leading 
to the result 

PF[ P'f(t) ]" ~= PF[ P'f( t) ] '~ (3.59) 

Before we go over to the higher iterates of [P'f(t)],  we make the 
following observations: 

(1) [P'f(t)] ~~ consists of 5Lo, 5,,.1- 

(2) I',~drK(t, r ) [ P ' f ( r ) ]  "'1 consists of 5_,.o, 5~.1, 50.2, i.e., actions of 
K(t, r) produce all possible eigenstates of-Po one unit higher than the eigen- 
functions contained in the functions on which it acts. 

(3) The effective action of the oprator P F  is to take inner products 
of 5~.o, 5~.,~, and ~,] t with the functions on which it acts. 

It is clear that for the second iterate of P'f( t)  one has 

f 
l 

PF[P ' f ( t ) ] " - '=PF[P ' f ( t ) ] ' "+PF drK(t, r ) [ P ' f ( r ) ] ' "  (3.60) 
Ill 

which, with the result (3.59), boils down to 

ft 
Pff[P' f ( t )]"- '=Pf f[P' f ( t )] '~  drK(t, r ) [ P ' f ( r ) ] ' "  (3.61) 

II 

Since [P' f ( t )] '"  consists of 5,.,,, t~o.,, 5_~.o, 5, . , ,  and 5,,.2, according to 
observation (2), ~',drK(t,r)[P'f(t)]"' contains the functions t~2.,,, t~,.,, 
5,,.2, 53.,,, 52.~, q/D.2, and ~bo. 3 and in accordance with observation (3), 

PF.I,I, dr K(t, r ) [ P ' f ( r ) ] " '  = 0 (3.62) 

Thus we get 

PF[ P'f(t)]"-'= PF[ P'f(t)] '~ (3.63) 

In this way we can see that in Eq. (3.30) we need to consider no higher 
iterates of [P' f]  than the zeroth order. Hence in the Markov approxima- 
tion, the time evolution equation for projected distribution g(x, t) turns out 
to be 

c3g(x, t) 
r rc~ + L~'(t) ] g(x, t) ~t = L--M (3.64) 
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where L m~ and L ~ ( t )  are obtained from Eqs. (3.44) and (3.48). They are 

L , O , _  O 2 

Ux'- (3.65) 

0 
L~'( t)  = - k A o  cos(12t + 0 + fl) O-~v (3.66) 

Once we obtain the Markovized description of the process (3.4), we 
can use the result (2.31) for the expression of the output SNR at co=f2. 
The only substitutions that we have to make in (2.31) are 

A --. k A o  (3.67) 

D --* O(k/coo)  2 (3.68) 

The signal-to-noise ratio at the output at the signal frequency is 

I , , = ( r c A - / 4 D ) { c o o / [ ~ , - f 2 - + ( c o o - 0 2 ) 2 ] } ( l l  V[, 10)-'/2,D (3.69) 

As the signal-to-noise ratio at the input is 

Ii = nA  2/4D (3.70) 

the ratio of output SNR to input SNR is 

R =  l , , / I i =  { 4 . . . .  coo/[?'-f2-+(coo--~2)2]}(l] Vo 105-~/2,D (3.71) 

Comparing the expression (3.71) with (2.33), we note that the ratio 
obtained from (2.33) is modified by a factor 

co4/[),2f22 + (coo _ ~_,)2 ] (3.72) 

This factor assumes a particularly simple form when the characteristic of 
the harmonic noise COo matches with the signal frequency f2. In this special 
case the factor in (3.72) turns out to be Q2, where Q is called the quality 
factor and is defined as 

Q = g2/), (3.73) 

From our previous analysis we found that for a bistable potential the 
ratio R takes a maximum value roughly equal to 0.66 [see Eq. (2.39)]. In 
the process (3.4), where the potential Vo is assumed to be bistable and the 
noise characteristic coo matches with the signal frequency/2, the maximum 
value of the ratio R changes to 0.66Q 2, which could be made greater than 
unity with the improvement of the quality factor of the linear filter. 
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4. C O N C L U D I N G  R E M A R K S  

We have shown that the ratio of output SNR to input SNR is less 
than unity when a bistable system is perturbed by a signal in a white-noise 
environment. We further show that when a nonlinear system is perturbed 
by harmonic noise and the signal is applied at the source of the harmonic 
noise generator, this ratio can be made larger than one. This feature makes 
the enhancement of the SNR at the output much better than with the 
white-noise case. Hence the quality of the signal can be improved con- 
siderably. 

This analysis shows that output SNR or ratio of output SNR to input 
SNR is independent of the noise parameter k, which is the amplification 
factor in the linear amplifier. 

If the signal is introduced on the r.h.s, of Eq. (3.1) and not at the 
source of the noise generator as in (3.3), the corresponding time evolution 
equation in the Markov approximation would be identical to Eq. (3.64) 
except that the operator L~  ~ would be 

0 
L~'(t)  = - A  cos(g?t + 0) 0-~,v (4.1) 

The ratio of output SNR to input SNR at the signal frequency would be 
in this case 

R = (o)~/k)2( 11 V; 10) 2/2, D (4.2) 

Thus in this situation the modification factor would depend on the 
amplification factor k, although it would become independent of the 
parameter ),. 

Finally, instead of harmonic noise, if one applies Ornstein-Uhlenbeck 
noise (OU), the Langevin equation reads 

2 =  - V ; ( x ) + k y  (4.3) 

9 = --~,Y+ A cos(g?t + 0) + F( t )  (4.4) 

where F( t )  is stationary white noise. It can be shown by a similar analysis 
that the time evolution of the projected distribution in the Markov 
approximation is 

Og(x, t) 
Ot [L~+ L~l(t)] g(x, t) (4.5) 
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where L I~ and L~( t )  are defined as 

L~ '=  --(O/Ox) ( - V;(x)) + D(k/7)'- O'-/Ox'- (4.6) 

L ~ ( t )  = -k[A/(72+I22) I/2] cos(.Qt + 0 + cr (4.7) 

with the phase a be determined through 

tan a = - .O/7  (4.8) 

The ratio of output SNR to input SNR at the signal frequency would be 
in this case 

R -  [),2/(7-~ § 11 IQ 10)2/2,D (4.9) 

For a bistable potential the maximum value of (11 Vgl0)2/~t~O is 
approximately 0.66, and as the modification factor is less than unity for 
finite I2, the ratio which is of primary concern in this paper is less than 
unity when the nonlinear system is subject to a noisy environment having 
the characteristic of OU noise. 
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